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Scaling analysis of Langevin-type equations
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The approach of scaling behavior of open dissipative systems, which was proposed by Hentschel and
Family [Phys. Rev. Lett. 66, 1982 (1991)], is developed to analyze several models. The results show there
are two scaling regions, a strong-coupling region and a weak-coupling region, in each model. The dy-
namic renormalization-group results are exactly the same as the results in the weak-coupling region.
The scaling exponents in the strong-coupling region and the crossover behavior are also discussed.
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The scaling behavior of a growing interface is a chal-
lenging problem of both theoretical and practical interest
[1-3]. One approach to studying this behavior is by
deriving Langevin-type equations, which are assumed to
incorporate physics. Typical of such equations is’the
Kardar-Parisi-Zhang (KPZ) equation [4] for the height
fluctuations 4 (7,¢) in an interface growing with a velocity
A normal to the interface,

Oh _ oo A 2 1

a1 vV*h + 2(Vh) +x(rt), (1)
where

(q(r,t)n(r',t"))=2D8(r —r")8(t —1') . ()

Other examples are molecular-beam-epitaxy (MBE)
growth [5] and the Sun, Guo, and Grant (SGG) equation
[6] for the interface height of a driven interface with con-
servation law.

These nonlinear equations are, in general, insoluable.
Therefore, most of the efforts in the past have been fo-
cused on determining the scaling behavior of the fluctua-
tions using a dynamic renormalization-group (RG) ap-
proach or by direct numerical solutions of these equa-
tions [4,5,7,8]. The dynamic RG has had only a limited
success in the study of dissipative systems because there
is no Hamiltonian formulation for nonequilibrium pro-
cesses, and in most cases, RG equations cannot be formu-
lated or solved. Numerical solutions, on the other hand,
are of practical importance, but can only give approxi-
mate values of the scaling exponents. But since numeri-
cal results are only approximate and cannot be used to
determine universality and crossover behavior, they do
not provide physical insight into these processes. In ad-
dition, unlike the scaling behavior at a critical point
which is described by a single exponent, fluctuations in
dynamical systems can have different scaling behaviors
depending on the length scale. Thus it would be useful to
have an approach that could be readily applied to
Langevin-type equations and which could be used to
determine the exponents in any dimension for different
scaling regions.

Recently, Hentschel and Family have proposed a very
interesting approach for studying the scaling behavior of
Langevin-type equations for dissipative dynamical sys-
tems [9]. Their approach is similar in spirit to the scaling
arguments used by Kolmogorov in the analysis of fully
developed turbulence and is based on the analogy be-
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tween Langevin-type equations and the forced Navier-
Stokes equations. They show that the approach can be
applied to derive not only the critical exponents in any
dimension, but also the fluctuation amplitudes, critical
dimensions, and regions of validity, where various ex-
ponents may be observed. The approach may be con-
sidered a nonequilibrium equivalent of the Flory theory
for equilibrium scaling. They demonstrate the approach
by several models, such as interface growth with the KPZ
equation, surface growth with conservation law, self-
organized criticality, and surface growth with quenched
randomness.

The physics of this approach is as follows: when
coarse grained over length scales /, each separate term in
the equation must be of the same order of magnitude or
negligible to show dynamic scaling. Only under these cir-
cumstances can scaling behavior arise. The validity of a
scaling region can then be found in a self-consistent
manner from the region of length scales over which in-
trinsic assumptions apply. The art, as in Flory theory,
lies in estimating the magnitude of individual terms, espe-
cially as, in general, we are dealing with self-affine and
anisotropic systems which introduce several length scales
into the estimate.

In this Brief Report, we analyze the scaling behavior of
MBE growth, interface growth with conservation law,
and the interface growth KPZ equation with spatial and
temporal correlations, respectively. We show that there
are two regions in each model, the strong-coupling region
and weak-coupling region. The dynamic RG results are
exactly the weak-coupling results. The scaling exponents
of the two regions are equal when d <d,; d, is the bifur-
cation dimensionality, and as d >d,, they will become
branched.

Molecular-beam epitaxy. The first open system we ex-
amine is the technologically important MBE-growth pro-
cess under ideal MBE-growth conditions [5], i.e., atom
stochastic growth without any bulk defects or surface
overhangs. The growth must obey a mass conservation
law, and is described by

Ot o o+ 2v2Vh ) 3)
at 2
The correlations satisfy Eq. (2). The results of dynamic
RG and various numerical simulations are consistent
with each other. The physically interesting dimension for
MBE growth is d =2+1 where we obtain a=1%, =1,
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and z =12, The situation with d =141 is also physically
realizable in the context of adatom motion on vicinal sur-
faces with steps and the corresponding exponents are
a=1,B=1,and z=3.

We assume that at long times ¢ >>¢; and averaged over
length scales /, the typical magnitude of the fluctuations
in the interfacial height scale as ([h(r+11)
—h(r,t)]?) ~h?, and that at long times these fluctuation
last for times of the order ¢;. Then, apart from the noise,
and averaged over scale /, the various terms in the growth
equation may be estimated as (dh/dt),~h;/t,
v(V2h ), ~vh; /1%, and (A/2){(Vh)*), ~(A/2)(h}/12).

To proceed further we need to estimate the average
noise on these length and time scales. For white noise we
estimate its mean-square fluctuations on length scales /
and times scales ¢; as 7~ [D /(S;t;)]'/%, where S, is the
average surface area of the interface on length scale /.
This is a sample consequence of adding uncorrelated ran-
dom variables. We estimate the surface area of the
growth on length scale / as S, ~ (h?+1%)'¢ ~1/2 and, con-
sequently, for smooth surfaces 7, ~[D /(19 ¢,)]'/? while
for rough surfaces 7, ~[D /(h? " 1¢,)]1/2

To derive the rough and dynamic exponents, we as-
sume that at sufficiently large length scales [ >>1I, the
nonlinear term in the MBE equation will dominate the
surface diffusion. The region where this assumption is
valid is defined by h; >v/A. Equating the dh /3t term
with the nonlinear term implies that a typical fluctuation
lasts for times ¢,~I*/(Ah;) and the scaling behavior of
these two terms implies @ +2z=4. Equating our estimate
for the noise fluctuation in a rough interface h; >>[ (a
condition yielding an outer length scale /) to the iner-
tial term then yields

h1~(D/)\.)1/(d+2)l4/(d+2) 4)

and, consequently, a=4/(d +2) in this regime. The
inner length scale /;, can now be found by inserting Eq.
(4) into the self-consistency condition. We can find the
scaling behavior of A, with time ¢ at short times by re-
expressing 4, in terms of ¢, and assuming scaling is valid
for t <<t; with the result

ht~D1/(d+1)tIl/(d+l) (5)

and, therefore, B=1/(d +1).

The outer length scale can be found by substituting Eq.
(4) into the criterion for the existence of a rough interface
and this implies that we may expect to observe the ex-
ponents only in models in the strong-coupling limit where
the dimensionless parameter g =A?71p /v¥>>1, which is
analogous to the Reynolds member describing hydro-
dynamic turbulence.

If g <<1, it is also possible to find a region where the
coupling is weak and can be treated as a perturbation.
We estimate that the noise term is for the smooth surface
n,~[D /(147 11;)]'/2. Equating the dh /3t term with the
nonlinear term also gets t;~1*/Ah;. Equating our esti-
mate for the noise fluctuation in a smooth interface yields

h["’(D/A)I/SI(S—d)/:; (6)
and, consequently, a=(5—d)/3 while
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ht~D4/(7+d)k(1—d)/(7+d)t(5-—d)/(7+d) 7)

and, thus, B=(5—d)/(7+d).

The exponents are exactly the same as the results de-
rived by Lai and Das Sarma [5] using the dynamic RG
method. This shows that dynamic RG results are in the
smooth region which satisfies g <<1, i.e., in the weak-
coupling region. When comparing the two sets of ex-
ponents, we find that when d <2, they are equal. As
d >2, they will become branched. The strong-coupling
surface is rougher than that of the weak-coupling surface.

Interface growth with a conservation law (SGG equa-
tion). In order to study the effect of conservation law on
interface growth, SGG uses the dynamic RG to study the
nonlinear Langevin equation [6],

Oh _ ool o2, o A 2

Y Ve |vV°h + > (VR | +n(rt), (8)
where

((r,t)n(r',t"))=—2DV28(r —r")8(t —t') . )

Again neglecting the diffusion term as small as large
enough length scales and equating our estimate for the
time variation in height fluctuations {9k /dt),~h;/l,
to our estimate for the nonlinear term
(A/2){VHVh)?),~(A/2)(h2/1*) yields the identity
a+tz =4,

In the weak-coupling region g << 1, equating the 94 /3t

term to the smooth surface noise estimate
n~[D /(1971)]/? yields
hy~(D /A3 D73 (10)
and, consequently, a=(3—d)/3 with d, =3 and
t;~(DA2) 1310+ d)/3 (11)

Consequently, z =(9+d) /3 in this region is again the ex-
act dynamic RG perturbation result of SGG. In the
strong-coupling regime g >>1, equating the dh /9t term

to the rough surface noise estimate
7 ~[D/(h?~11%,)]'/? yields

hIN(D/}\.)l/(d+2)IZ/(d+2) (12)
and, consequently, a=2/(d +2) while

t)~D /A +D) @+ D/ +2)[(4d +6)/(d +2) 13)

and, consequently, z =(4d +6)/(d +2). These two set of
exponents are equal at d =1, while d =2 is the bifurca-
tion point.

Interface growth KPZ equation with special correla-
tions. Medina et al. [7] and Zhang [10] consider a gen-
eralization of the KPZ equation for interfacial growth in
which the noise, instead of being a & function, has be-
come the spatial correlation

(qr,t(r,t"))=D'lr—r'|?7 @7Vt —¢t') . (14)

We expect the effect of long-range correlations in the
noise to change our estimate of the noise fluctuation aver-
age over length scales / and time scales #;. When g >>1,
we estimate the noise as n;, ~[D /(h =21 (d=Dz)]172 As
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all other relationships remain unchanged, the behavior of
h; and h, can immediately be found with the result

hlN(Dl/}»)l/(2+d_ZP)IZ/(Z_H]_ZP) (15)

and, therefore, a=2/(2+d —2p) while
ht~(D/t)1/(1+d—2p) . (16)

Thus, B=1/(1+d —2p). This is the result of Hentschel
and Family. It is a strong-coupling result. In the weak-
coupling region, where g <<1, the noise estimate is the
smooth region 1, ~[D /(1 =@ =V¢)]11/2 1n this condi-
tion, the results can be found as

hy~(D' /A)1/3]2=d"+2p)/3 17)

and, consequently, a=(2—d'+2p)/3, while
t,~D'l/3?u_2/3l(4+dl_2P)/3 (18)

and thus z =(4+d'—2p) /3, where d’=d — 1. This is ex-
actly the perturbation results of Medina et al. [7].

KPZ equation with temporal correlation. Considering
the interface growth with temporal correlations, the noise
correlation instead of white noise is

(p(r,t)n(r',t"))=2D8%r —r")|t —1'|? . (19)

In the weak-coupling region, g <<1, we estimate that the
noise is in smooth region 7, ~[D /(1¢ 7't/ 201112 and
the following result can be found:

h[ ~D l/(29+3))\'—(26+1)/(26+3)l(2*‘d +40)/(3+26) (20)

and, therefore, a=(2—d +40)/(3+26), while
t1~D_1/(29+3’A“Z/(29+3)l(8_d)/(29+3) 21
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so z=(8—d)/(260+3). In the strong-coupling region,

g <1, we use the rough region noise
n;~[D/(h? 172911172 which yields
By ~D1/(20+d+2)) —(26+1)/(20+d +2)](2+40)/26+d +2) (39

and, therefore, a=(2440)/(26+d +2) while

t ~D wl/(26+d+2)}\’—(d+l)/(29+d +2)l(2d +2)/(26+d +2) ,

(23)

and so z =(2d +2)/(20+d +2). Here we get the scaling
exponents for the KPZ equation with temporal correla-
tions in the strong-coupling and weak-coupling regions,
respectively.

In conclusion, we have developed this approach to
study the scaling behavior of fluctuation in dissipative
dynamical systems, which is proposed by Hentschel and
Family. We have illustrated that there are two different
regions for obtaining scaling exponents, the strong-
coupling rough region and weak-coupling smooth region.
In particular, we show that the dynamic RG perturbation
result is exactly the result in the weak-coupling scale re-
gion. In addition to distinguishing the two regions, we
provide insights into the strong-coupling region that can-
not be observed in the dynamic RG calculation. The
different scale regions manifest themselves in regions
where the noise terms are estimates in different forms.
Clearly, the range of applicability of this approach will go
beyond the above analysis.
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